
Hybrid Datacenter Scheduling

Abhimanyu Rawat (2015H103081P), Arpit Srivastava (2015H103076P)
M.E., BITS Pilani Campus

Aug-Dec 2016

Abstract

With the emergence of large data-centers, scheduling of workload has
become more challenging. Initially, centralized approach for scheduling
was widely used, but it had drawbacks of sub-optimal scheduling for the
small task as they were queued behind the large tasks.

Then models for fully distributed scheduling were proposed that has
other problem of performing badly for large task sets as required amount
of the data-center resources was not controlled by a distributed scheduler
hence resources were not allocated optimally. In our model, long jobs
are scheduled using the centralized scheduler while the short ones are
scheduled using the fully distributed scheduler. The distinction of a long
job from a short job varies based on the jobs arriving to scheduler. Along
with this to avoid queuing of the short jobs behind the long ones a partition
of the cluster is always reserved for the small jobs. The reserved size of the
partition varies as well depending on the inclination of size of jobs coming
for execution. Another feature of our model is that when a task is to be
scheduled by the distributed scheduler it probes the nodes for availability,
so when sending their response back the nodes could advertise their load
and other parameters to facilitate the scheduling decision.

We compare our results with the state-of-the-art fully Distributed
Sparrow scheduler, Hybrid scheduler Hawk and Eagle. We have evalu-
ated our model using trace-driven simulation, using traces with mixed
types of jobs with heavy load on cluster. On analysis, we were able to
achieve a good percentage of improvement over other schedulers.

1 Introduction

Today’s data centres are huge in both size and added performance, with the
advent of high-end network devices and commodity hardware adding the parallel
compute to the service. Large clusters have to deal with an increasing number of
job, which can vary significantly in size and have varying latency requirement for
long and short jobs. Short jobs, due to their latency sensitive nature are more
affected due to delay in scheduling while the Long jobs are not affected much by
latency in scheduling. Efficient scheduling of data-center for the heterogeneous
loads is of increasing importance to data center operators.

1



The first-generation cluster schedulers that were used in Hadoop were mono-
lithic in designed and used the centralized approach for scheduling. A centralized
scheduler has the information of all the available resources in the data-center.
So for taking the scheduling decisions centralized scheduler have long latency
time in making a scheduling decision. This delay significantly affects the per-
formance of the short jobs while the long jobs are not that much affected. For
many of these reasons the, there is a recent movement towards the distributed
scheduling, the pros and cons of distributed scheduling is exactly the opposite
of the centralized scheduling, but low latency in scheduling decision they have
proved to be superior for the performance of short jobs.

In our model, scheduling proposed is hybrid in nature and have the benefits
of both centralized and distributed schedulers. Our model schedules the long
jobs using the centralized scheduler and the small jobs using the distributed
scheduler. This compensates for the cons of both type of scheduling. In addi-
tion to this it task stealing algorithm that is meant to reallocate the queued task
to other sparsely loaded server for any sub-optimal scheduling decision taken
by the scheduler. Along with that we label the tasks on the basis of their equa-
bility, this further improves the performance of the scheduler. While making
scheduling decisions for short jobs, distributed scheduler probes the availability
of the nodes, in response the nodes instead of sending a binary message can send
the status which could further be used to optimize the scheduling decisions.

The rationale of this hybrid approach is that the small number of long jobs
does not overwhelm the centralized scheduler. Hence scheduling latencies remain
modest while large number of short jobs are scheduled by distributed schedulers
hence latency for short jobs doesn’t comes into picture. We have simulated our
model and compared the performance with Sparrow, Hawk and Eagle scheduler.
And the results are demonstrated using the freely available Google Trace and
workload derived from Yahoo and Facebook.

2 Related work

First Datacenter schedulers were monolithic in design which leads to scalabilities
issues[7]. Second generation schedulers (YARN, Mesos) had two level architec-
ture which decouples resource allocation from application specific logic such
as task scheduling. However, the two-level schedulers relied on a centralized
scheduling and resource allocation that lead to bottleneck in large clusters. in
contrast to them Hawk schedules in distributed manner mostly minimizing the
scalability concerns.

Fully distributed highly scalable design such as Sparrow data center sched-
uler emerged, they perform well for the short jobs under loaded clusters. But its
performance degrades in the case of high load and specially if the jobs are het-
erogeneous in nature. It is due to the design of the Sparrow which is geared to
extreme scalability that is not able to draw the benefits from the load informa-
tion known prior. Moreover, sparrow doesn’t have a mechanism to compensate
for any suboptimal decision in allocation of task.

2



Recent studies have moved towards hybrid solutions which uses the benefits
of both worlds i.e. the scalability of the fully-distributed schedulers and the
efficiency of the centralized schedulers. In Apollo, distributed scheduler utilizes
global cluster information via a loosely coordinated mechanism[1]. Apollo does
not differentiate in long and short jobs but schedules both of them as same.
Apollo have a node level correction mechanism to compensate for the inaccurate
decision made. If a task is queued longer than estimated at scheduling time,
then Apollo starts duplicate copies of the task on other nodes. Another model
is Mercury, which put labels on the jobs as Guaranteed or Queueable, if a job
is guaranteed it will start execution as soon as the job comes to scheduler[5]
while if a job is Queueable it can be queued in the ready queue of the node
for execution. Mercury is primarily uses set of policies to decide the scheduling
of a particular job. Hawk is yet another hybrid scheduler which is a mix of
distributed and centralized schedulers for jobs categorized as short and long on
the basis of mean execution time. It has employed a randomized task stealing
algorithm for finding the short jobs queued behind long jobs. Hawk performs
comparatively better over heavy loaded cluster for mixed type of tasks. Other
proposed models are Omega.

3 Components

3.1 Data-center, Cluster and Nodes

Data-center is referred to as a place where large number of machines are working
together to provide task execution service. In literature data-center is referred
as provider of computing as a service. User can submit their jobs to data-center
for processing. Data-centers have high end machines that are linked together
to work as a combined entity, such that they can be controlled and fed in input
from a limited number of channels. Cluster is a set of machines in a datacenter
that are configured specifically to work in cohesion with each other by means
of some software component. Example, A spark cluster has multiple machines
configured to it, so they all are controlled by the same controllers and jobs are
scheduled by the same scheduler.

Nodes are essentially being the machines which executes the tasks and are
the part of the clusters in a data-center. Nodes are often referred as servers. A
node could be a part of more than one clusters in a data-center depending upon
its hardware configuration and usage.

3.2 Jobs and Tasks

A job is defined as a batch of tasks. Tasks are the individual in dependent units
for execution over the cluster. A collection of units requested by a user or are
similar to each other. A job can have restrictions for execution on machines with
particular type of attributes like Architecture, OS version, support for specific
library, GPU etc. These constrains can be soft or hard, these setting are like

3



Figure 1: Load variation for Sparrow

preferences for soft type rather than requirement. The start of the job cane be
differed by the scheduler at the cluster, depending upon its criticality.

Each individual task maps to a virtual machine or container for execution[6].
The cost of virtualization is not considered for the execution of the tasks. Re-
quired/requested configuration (in terms of CPU cores, Memory, TCP ports)for
execution of the VM’s is provided to tasks.

3.3 Workload

Workload is the amount of jobs that are coming to the data-center for execution.
If the number of jobs that are coming for execution are larger then the cluster
is heavy loaded. Workload as per the traces provided by Google, Facebook and
others show that the nature of the workload is heterogeneous in nature i.e. it’s
the mixture of short and long jobs if we consider on the basis of execution time.
Considering the number of jobs, long jobs comprise of very small number of
total number of jobs. But these small number of once in a while coming jobs
can consume large amount of data-center resource. Short jobs though large in
number finish execution as soon as they arrive. From the analysis of traces of
Google where number of long jobs is around 10%, but they consume around
83.65% of the total time in execution. Similar patterns for heterogeneity is
observed among other traces from Cloudera, Yahoo and Facebook[4].

3.4 Aim for high utilization

With the advent of cloud based system, more and more computing is moving
to the data-centers. Efficiency of the resources is dependent upon provisioning
and operational cost, less the resources required for the overhead of execution

4



of user jobs. The main challenge for the data-center operators is to provide the
acceptable level of quality of service during the peak hours of the request rates,
which may overwhelm the data center.
For a single server, the main challenge is to maximize resource utilization by
collocating workloads without the danger of decreasing the performance due to
contention[9]. Thus, several resource scheduling and isolation mechanisms have
been proposed, which ensures high performance on single server. While running
multiple jobs on multiple servers have orthogonal challenges which are beyond
the proposed mechanism for a single server. The problem targeted here is of
scheduling multiple jobs on cluster of servers in a scalable fashion such that all
resources in the clusters are efficiently used.

3.5 Challenges for cluster schedulers

We next show by means of simulation the performance of fully distributed Spar-
row scheduler and centralized YARN scheduler. We observe from the simulation
that the performance of the both fully distributed and fully centralized sched-
uler tends to be optimal for a small number of jobs but as the number of jobs
stat growing and the usage of the cluster reaches the highly loaded state the
performance of the above-mentioned schedulers start degrading. Centralized
schedulers have high cluster utilization overall in term of amount of processing
but poor in terms of number of jobs processed. As short jobs get scheduled they
may be queued behind the long job hence their total execution tie has waiting
time as major part which is not desirable. While on the other end of the spec-
trum distributed scheduler to perform decently when number of tasks are small,
as the number of tasks start to increase the utilization, start to decrease, as
distributed scheduler is not aware of the state of the cluster and randomly al-
locates the jobs to nodes hence it might happen that certain number of nodes
are heavily loaded and queued while the rest are relatively free.

So, for the cluster the scheduling should be such that it it able to perform
optimally for short as well as long jobs under heavy load conditions. We use
the simulation used by the Sparrow paper to investigate the above stated. We
consider 12000 jobs, to be simulated over 5000 nodes. 90% of which are consid-
ered to be the small jobs. Each short job has 250 tasks and each tasks takes 50
Seconds for execution 10% of the long jobs have 1000 tasks with each task taking
10000 seconds. The job submission time are derived from a Poisson distribution
with mean of 50s.

We observe the cluster utilization (i.e. the percentage of usage of server at
a point of time) per 50 sec. The median utilization came out to be 84.47% and
the mean was around 95.65%. This implies that there were essentially 4% (i.e.
200 nodes) of cluster free at any point of time that is pretty much to more short
jobs. These calculations are made keeping aside the overhead cost of running
the essential tasks as we only aim to observe the scheduling cost.

5



4 Proposed Approach

4.1 System Model

A cluster is considered to be composed of server nodes. A job is a collection
of various tasks and job completes when all the tasks of a job complete. The
term Long job refers to the job having tasks that are a longer running times
and vice-versa for short jobs. Each server has one queue of tasks. When a new
task is scheduled on a server if that server has a task already running then the
new task is queued at the end of the queue. The server queue management is
FIFO.

4.2 Model

Hawk has the following 5 goals:
1. to execute jobs on cluster at high utilization
2. to enhance the performance of the short jobs which are most penalized ones
in the highly-loaded cluster
3. to sustain or improve the performance of long jobs.
4. to overcome any suboptimal decision taken during scheduling of jobs
5. provide the user some control on the scheduling of his jobs

To fulfil these requirements, our model relies on the following strategies. To
improve the performance, the head-of-line blocking must be avoided for this
combination of 5 techniques is used. First, it reserves a small portion of the
cluster for the for the short jobs whose size varies with the recent jobs. Second,
to maintain a low latency scheduling decisions. Finally, Hawk relies on central-
ized scheduling for long jobs to maintain good performance for them, even in
the face of reserving a part of the cluster for short jobs. The rationale of this
choice is to get a better scheduling decision for long jobs.

4.3 Differentiating long and short jobs

The main idea behind this is to process the long and short job differently. We
need to draw the line between the long jobs and short jobs. For this purpose,
our model uses a function which decides the cutoff time of the tasks in a jobs
which is based upon the heuristics of the past few task sizes in the job. Average
task execution time serves as a relatively robust for prediction about the job.
The cut-off of long and short jobs is varied dynamically for 10 percent variation
of the current task size.

4.4 Splitting the Cluster

We reserve a portion of the cluster for the execution of the short jobs. The
partitions are termed as short partition and general partition. The long jobs

6



are scheduled on the general partition by the centralized scheduler and the short
jobs can be scheduled on any of the partition by the distributed scheduler. The
restriction here is that the long jobs cannot be scheduled on the partition re-
served for the short job i.e. short partition. This is done to avoid short job
being queued behind long job and waiting for its completion. We keep the size
of the partition variable and is dependent upon the heuristics applied on the
basis of the last few tasks which came in.

4.5 Scheduling Short Jobs

Our model maintains a low latency scheduling for the short jobs using the dis-
tributed approach. Each short job is scheduled using a different instance of
distributed scheduler for scalability reason, these scheduler instances have no
knowledge of current cluster state or nor do they interact with the other sched-
ulers or with the current centralized component.
Distributed scheduler schedule the tasks on the entire cluster without consider-
ation of the partition scheme that we have in place. The first scheduling step
is achieved as in Sparrow. To schedule n tasks probes are sent to 2n nodes.
When a probe comes back to the scheduler confirming the availability of the
node, once the number of probe responses reach n the task is scheduled on the
nodes that responded.

4.6 Task Stealing Algorithm

Our model uses heuristic based task stealing algorithm for compensation for sub-
optimal decisions taken during scheduling of the short jobs on a highly-loaded
cluster. In a highly loaded cluster the probability of a task getting queued is
very high, probe send to a server is most likely to queue the task. So in order
to improve the performance by reducing the queuing of the tasks Hawk have an
implementation of Randomized task stealing algorithm. This algorithm probes
the servers which have tasks queued and if the queues are present it tries to
reassign the task to some server which is lightly loaded. So, this avoid long
queues at certain nodes in the cluster while some other nodes are not that
heavily loaded. As an optimization node in general partition executing the long
jobs are considered for queuing check. After a long job have arrived, the next
coming several small jobs are allocated by the distributed scheduler are the main
targets of the task stealing algorithm task are stolen from any of the queues of
the loaded severs and from the head of the queues, it is assumed that head of
the queue has waited the longest and should be executed first. By reducing the
queuing, the performance of Hawk model increases considerably.

4.7 Scheduling Long Jobs

Long Jobs are scheduled using a centralized scheduler and only on the gen-
eral partition and the centralized scheduler have no knowledge where the short

7



components are being executed. The centralized approach ensures good perfor-
mance for three reasons. Firstly, number of long jobs are is small, so centralized
component is unlikely to become a bottleneck. Secondly , long jobs have large
latency bounds, so they are largely unaffected by the moderate scheduling la-
tency. Thirdly, by scheduling the jobs centrally and by the fact that these long
jobs take up the large fraction of the cluster resources, so a fairly accurate view
of the per node usage of is available.

4.8 Advertising the Load

To further improve the performance of scheduling, we have mechanism to opti-
mize the scheduling decisions to be taken. While scheduling the short jobs using
distributed scheduler. So, when the probes are sent to the nodes for advertising
their availability so instead of just sending binary data, nodes can send load
statistics to the scheduler so that it can take even better decisions.

5 Experimentation

5.1 Setup

We have used trace driven simulation for the demonstration of our modified/patched
Hawk[4] model. We have used the simulation used by the original Hawk[4] paper
for experimentation by augmenting our model to it.

5.2 Comparison of Results

We have compared our results with the state-of-the-art fully distributed Sparrow
scheduler, Hybrid scheduler Hawk. We have shown that for loaded clusters
our model outperforms Hawk and Sparrow for both short and long jobs. The
dynamic varying of the parameters allows our model to hold advantages across
all the workloads. We have also compared our model to centralized scheduler.

5.3 Workloads

We have used the openly available Google Trace [10, 8], we have filtered the
failed jobs out and we are left with 50613 jobs. Task duration vary for a given
job, the estimated task duration of the job is the average of the duration of all
the jobs.

We have created additional traces using the similar approach taken by [4] i.e.
using the description of workloads from Yahoo 2011 form [3] and Cloudera and
Facebook 2010 workloads from [2]. In [3] [2] workloads are in form of k-means
clusters.

8



Figure 2: Varying the cutoff

5.4 Varying the task cutoff dynamically

Hawk proposed of using a fixed cutoff for the long and short jobs. This approach
works well for high load cluster with heterogeneous mixed tasks. Its performance
degrades slightly for jobs whose execution time lies very close to the cutoff value.
Additionally it is not able to take the advantage of the state information of the
type of jobs coming in for execution. So as to take the advantage of the type
of task coming for scheduling, we apply a heuristic algorithm that considers the
execution time of the past few tasks and vary the cutoff on the basis of it.

5.4.1 Task cutoff varying algorithm

Our algorithm keeps the execution time of the last few jobs in a list L. From L
we take the last 5 jobs that came in for execution and average them out avg. If
the average is varying more than 10% of our previously set cutoff. Then we set
the avg as the new cutoff.

5.4.2 Analysis

We got 8% to 10% improvement in comparison to Hawk on heavily loaded
clusters. The reason for this improvement is that the cutoff value for short and
long job varies as per the sizes of the coming jobs. Cutoff increases if the job
size tends to increase continuously and vice versa. One important observation
is that the number of task stolen by the task stealing algorithm decreases. This
happens because now the cutoff moves as per the job sizes, so they are scheduled
more optimally in first place so less number of jobs are available for stealing.
Similar observations are recorded across multiple runs with small variations
across all the traces.

5.5 Varying the partition size dynamically

Hawk uses a fixed size partitioning for reserved and general partitions. This has
a drawback, being static the size of partition cannot vary across as necessary
as per the density of jobs in the long or short ranges. In our model, we have

9



Figure 3: Varying the partition size

added the provision for varying the partition size dynamically dependent upon
the type recent number of job types short or long. As the number of short jobs
increase the size of the reserved partition increases as well hence more number
of short jobs can be scheduled through the reserved partition, further reducing
the probability of queueing. On the other side if the job size increases more
number of nodes will be made available to the general partition for queueing of
big jobs reducing their overall execution time.

5.5.1 Partition varying algorithm

Our algorithm varies the size of the partition as per the movement of the job
cutoff. So as per the algorithm, 1 or 2 job cutoff varies on the basis that the
size of the reserved partition is varied. So, for every variation in the cutoff we
vary the size of the reserved partition. Thus, if the cutoff is reduced form the
past cutoff value, then the size of the reserved partition is increased while if the
cutoff increases, then the size of reserved partition decreases by 2.

6 Downsides

Though as we have shown that our model performs better than the Hawk and
Sparrow. But it has it’s own underlying downsides. As we are keeping on dif-
ferentiating the cutoff and reserved partition size as dynamic, it’s performance
become prone to absurd variations in the job sizes. Any variations destabilizing
the cutoff will hamper the overall utilization of the cluster. Our model can tol-
erate smooth moving of the cutoff value but sudden changes are not responded.
This will only be the problem if the job size varies in such a way that it moves
the cutoff adequate to it and then the next job of opposite polarity and it again,
tries to move the cutoff to its levels.

10



7 Conclusion

There significant performance improvement over the fully distributed scheduler
Sparrow is improvement due to the long jobs which sparrow couldn’t schedule
optimally as any of the distributed scheduler is not aware of all the available
resources. If the jobs were to be of either type Long or Short Hawk would have
not outperformed the other approaches. So, if we know the type of jobs that will
be scheduled on the cluster then using Centralized or Distributed approach. But
if the type of jobs is not known priory then Hawk will provide better scheduling
than either if the two approaches assuming the jobs are heterogeneous.

References

[1] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. Apollo: scalable and coordinated
scheduling for cloud-scale computing. In 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 14), pages 285–300,
2014.

[2] Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive analytical pro-
cessing in big data systems: A cross-industry study of mapreduce work-
loads. Proc. VLDB Endow., 5(12):1802–1813, August 2012.

[3] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. The
case for evaluating mapreduce performance using workload suites. In 2011
IEEE 19th annual international symposium on modelling, analysis, and
simulation of computer and telecommunication systems, pages 390–399.
IEEE, 2011.

[4] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy
Zwaenepoel. Hawk: Hybrid datacenter scheduling. In 2015 USENIX An-
nual Technical Conference (USENIX ATC 15), pages 499–510, 2015.

[5] Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas,
Kishore Chaliparambil, Giovanni Matteo Fumarola, Solom Heddaya, Raghu
Ramakrishnan, and Sarvesh Sakalanaga. Mercury: Hybrid centralized and
distributed scheduling in large shared clusters. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15), pages 485–497, 2015.

[6] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. A
study of skew in mapreduce applications. Open Cirrus Summit, 2011.

[7] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow:
distributed, low latency scheduling. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pages 69–84. ACM,
2013.

11



[8] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-
usage traces: format + schema. Technical report, Google Inc., Moun-
tain View, CA, USA, November 2011. Revised 2012.03.20. Posted at
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2.

[9] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony
Rowstron, Tom Talpey, Richard Black, and Timothy Zhu. Ioflow: A
software-defined storage architecture. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, pages 182–
196, New York, NY, USA, 2013. ACM.

[10] John Wilkes. More Google cluster data. Google research blog, November
2011. Posted at http://googleresearch.blogspot.com/2011/11/more-google-
cluster-data.html.

12


