
Vendor-Independent Software-Defined Networking
Santiago Pagola Moledo
Dept. of Computer Science
IDA, Linköping University

Linköping, Sweden
santipagola@gmail.com

Abhimanyu Rawat
Dept. of Computer Science
IDA, Linköping University

Linköping, Sweden
abhimanyur2010@gmail.com

Andrei Gurtov
Dept. of Computer Science
IDA, Linköping University

Linköping, Sweden
andrei.gurtov@liu.se

Abstract—Software-Defined Networking (SDN) is an emerging
trend in networking that offers several advantages such as
smoother network management over traditional networks. By
decoupling the control and data planes from network elements,
a huge amount of new opportunities arise, especially in network
virtualization. In cloud datacenters, where virtualization plays a
fundamental role, SDN presents itself as the perfect candidate
to ease infrastructure management and to ensure correct op-
eration. Even if the original SDN ideology advocates openness
of source and interfaces, multiple networking vendors offer their
proprietary solutions. In this work, an open-source SDN solution,
named Tungsten Fabric, is evaluated in a virtualized datacenter
and several SDN-related industry use-cases are examined. The
main goal of this work is to determine whether Tungsten Fabric
can deliver the same set of use-cases as proprietary solutions.

Index Terms—SDN, datacenters, Tungsten Fabric, network
virtualization

I. INTRODUCTION

Software-Defined Networking (SDN) has long been a
promising technology with potential to change both the eco-
nomics of networking and the way we design and manage
our network infrastructure [1]. Unlike traditional IP networks,
where configuration and maintenance is carried out on every
network element (NE) individually in a time-consuming man-
ner [2], SDN is believed to provide new ways to automate
parts of today’s network configuration, particularly within the
context of cloud environments [3].

SDN is a networking paradigm that aims to separate
network control and data planes. In addition, it proposes
a centralized network control that has a global overview
of the underlying forwarding plane, thus making network
management more effective, scalable and agile [4]. By tran-
sitioning from a distributed to a centralized network control,
the network becomes programmable, thus yielding a smoother
configuration and maintenance.

Originally, SDN advocates the open-source ecosystem. The
primary organization behind the promotion of SDN, the Open
Networking Foundation (ONF), believes that SDN should have
open interfaces and well-defined APIs. Despite this thought,
many vendors have chosen to implement their own proprietary
solutions. An example of that is Juniper, which develops and
maintains a well-known SDN system named Contrail.

The goal of this paper is to explore alternate open-
source SDN solutions, such as Tungsten Fabric. Formerly

named OpenContrail1, Tungsten Fabric is a fully-featured
multi-cloud, multi-stack network virtualization solution widely
adopted by many networking companies such as Juniper and
Cisco.

This paper makes the following contributions: (1) it exam-
ines a number of practical use-cases that are of key importance
in cloud datacenters; and (2) it presents Tungsten Fabric as a
viable open-source SDN solution to be used in datacenters.

The rest of the paper is organized as follows: Section II
presents some related work on SDN in datacenters. Sections III
and IV describe the proposed architecture and evaluation
metrics to use, Section V goes through novel results, and
finally Section VI provides some guidelines and thoughts on
Tungsten Fabric’s eligibility in cloud datacenters.

II. RELATED WORK

SDN has been used within the research community for many
years since it enables rapid network prototyping and deploy-
ment. Examples of the different fields where SDN has proved
to be an excellent candidate are 5G [7]–[9], [23], industrial
control systems [10], IoT [11] and automotive sector [12] and
more.

Needless to say, SDN’s potential has also been tested in
cloud datacenters ([13]–[15]). In particular, SDN-enhanced
VM migration has been studied in [16], [17]. Authors in [18]
show how SDN can also help establish VPLS tunnels in
IP/MPLS underlay networks.

Solutions using different open-source tools have been pro-
posed in [19], [22], where an IT resource manager using
OpenStack, OpenROADM, OpenConfig, T-API, ODTN et.
al. has been developed. It enables the SDN/NFV use cases
for efficient utilization of resources, network maintainability,
multi-tenant slicing and management of multiple OpenStack
based datacenters. The flexibility of the solutions are limited
and the framework has multiple pieces working independently
making them a complex structure to operate, which eventually
would require some manual work to get them all function in
cohesion.

In the paper by TianZhang et. al. [20] different types of
live VM migration aspects have been put forward. Using
OpenStack, several systems and networking aspects have been

1http://www.opencontrail.org/opencontrail-is-now-tungsten-fabric/, last vis-
ited on: November 17, 2021

-168-

2021 IEEE 2nd International Conference on Signal, Control and Communication (IEEE-SCC 2021)
December 20 – 22, 2021, Hammamet - Tunisia

978-1-6654-0270-5/21/$31.00©2021 IEEE

20
21

 IE
EE

 2
nd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

ig
na

l,
C

on
tro

l a
nd

 C
om

m
un

ic
at

io
n

(S
C

C
) |

 9
78

-1
-6

65
4-

02
70

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SC

C
53

76
9.

20
21

.9
76

83
68

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on May 14,2022 at 14:43:27 UTC from IEEE Xplore. Restrictions apply.

discussed which directly affects the performance of the VM
migration. SDN plays a key role in making sure that the
migration process sees a minimum downtime. Performance
comparison between different migration approaches such as
parallel and sequential has been done. Different tools that
make up a framework have been proposed but they are loosely
integrated, which makes it difficult to standardize into a
generic use-case tool.

Toosi et. al. [21] proposed a low cost SDN solution using the
Raspberry-Pi and low cost embedded systems for conducting
research for SDN-enabled cloud computing. The proposed
solution paves a way to integrate the Open vSwitch, low-cost
embedded computers, to build up a network of OpenFlow
switches. In data center environments we use commodity
servers but low cost and energy devices are still not very
prevalent, however it could lead to a testing playground before
the real world deployments.

To the best of our knowledge, this is the first paper that
studies Tungsten Fabric. This is most likely due to the fact that
it was renamed from OpenContrail and adopted by the Linux
Foundation in December 2017. On the other hand, authors
such as Harrabi et al. [5] and Yu et al. [6] use OpenContrail
in their work. It is not unlikely that in the upcoming years
Tungsten Fabric will gain traction both in industry and in the
research community.

III. PROPOSED ARCHITECTURE

Figure 1 shows the proposed deployment of Tungsten Fabric
and OpenStack. There are a total of 4 compute nodes, where
in each of these the Tungsten Fabric vRouter instance runs,
one Tungsten Fabric controller (leftmost orange box) and one
OpenStack controller (rightmost orange box). The leftmost
gray VM is an Ubuntu Server 16.04 which acts as the DC-
GW, performing NAT so traffic originated from inside the
datacenter is able to reach the Internet through the provider
network. NAT, and other network-related configuration such as
traffic forwarding between the DC-internal networks and the
provider network (green), was implemented using iptables.

The red network in figure 1 represents the management and
API network, where instances are accessed and the different
API servers listen on, whereas the blue network is the DC-
internal network on top of which the overlays are created. Note
that, in terms of virtualization, both networks are created as
internal bridges, created prior to the deployment.

The deployment is fully automated with Ansible, using a
set of playbooks. Note that since the infrastructure is purely
virtual, all instances (i.e., controllers, compute nodes and the
DC-GW) run under the host machine’s KVM hypervisor. The
host bare-metal machine is a Dell PowerEdge R730xd server
with 377GB of RAM memory and 3.3 TB of hard disk.
The KVM-based compute nodes, in turn, spawn VMs using
QEMU, achieving nested virtualization.

Two PoDs are shown in figure 1. This is designed this way
to test OpenStack’s Availability Zone (AZ) feature, where two
such zones are defined: left, containing compute nodes 1 and
3, and right, containing compute nodes 2 and 4.

IV. TUNGSTEN FABRIC EVALUATION

The deployment has been made with Ansible and the virtual
infrastructure is created, a set of use-cases are performed in
order to observe Tungsten Fabric’s potential. These use-cases
have have also been studied in parallel using Juniper’s Contrail
Cloud SDN solution. Table I lists such use-cases. Table II lists
the different ways these use-cases being tested, per OSI layer.
A more detailed description of these follows in the upcoming
subsections.

TABLE I
PROPOSED USE-CASES TO EVALUATE TUNGSTEN FABRIC

ID Description
UC0 Achieve external connectivity from any VM
UC1 Create an IP network between VMs in the same AZ
UC2 Create an IP network between VMs in different AZ’s
UC3 Create a routed L3 connection between two IP networks
UC4 ”Stitch” IP networks to existing MPLS L3VPN’s
UC5 VM migration across AZ’s

TABLE II
EVALUATION METRICS FOR THE USE-CASES TO BE EXECUTED

OSI Layer Protocol Command Applicable Use-Cases
L2 ARP arp 1, 2
L3 ICMP ping 0, 1, 2, 3, 4, 5
L4 TCP nc 0
L7 HTTP wget 0, 3

SSH ssh 4

A. Achieve external connectivity from any VM

The main goal of this use-case is for any VM in the datacen-
ter to be able to achieve external connectivity. Tungsten Fabric
offers a number of ways for achieving external connectivity.
For this use-case, a distributed NAT is used. This means that
instead of achieving NAT functionality by using a logical
router to which virtual networks are connected, individual
virtual networks can reach the IP fabric underlay using existing
forwarding infrastructure on the compute node. As figure 2
shows, two NAT stages: the first one on the compute node to
which the VM belongs, and the second one on the DC-GW, as
mentioned in section III. This, however, only ensures outbound
L3 connectivity. For L4 and upper layers, port forwarding has
also been configured in the Tungsten Fabric controller.

As shown in table II, correct operation of this use-case is
checked by (1) pinging a remote host (ICMP, on L3), (2)
establishing a TCP (L4) connection to a remote server, and
(3) downloading a text file from a remote server using HTTP
(L7).

B. Create an IP network between VMs in the same AZ

This is the most basic form of L2 reachability between two
VMs. This use-case spawns two VMs belonging to the same
AZ, i.e., VMs running on either compute nodes 1 or 3. Since
this use-case is about verifying whether two VMs belong to
the same L2 domain, both VMs’ ARP tables are checked. We

-169-

IEEE-SCC 2021
December 20 - 22, 2021, Hammamet - Tunisia

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on May 14,2022 at 14:43:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Proposed virtual datacenter architecture

Fig. 2. Use-case 0

Fig. 3. Use-cases 1 and 2

expect the Tungsten Fabric vRouter to act as an ARP proxy
to avoid ARP flood messages through the whole datacenter,
thus reducing traffic. In addition, as shown in table II, one VM
pings the other VM in the same virtual network to test basic
L3 connectivity. Figure 3 illustrates this use-case.

C. Create an IP network between VMs in different AZ’s

This use-case is an extension of use-case 1, defined in
section IV-B above. The difference is that both VMs, still
belonging to the same virtual network, now be running in
different AZ’s: VM1 is hosted on compute nodes 1 or 3, and
VM2 is running on compute nodes 2 or 4. As for the previous
use-case, both VMs’ ARP tables are checked to verify that
the can reach each other within the same broadcast domain,
and one VM pings the other one to verify L3 functionality.
Figure 3 depicts this use-case.

D. Create a routed L3 connection between two IP networks

Figure 4 shows a combination of the previously defined use-
cases. This use-case is useful when a routed IP connection is
desired between virtual networks. There are two main ways to

Fig. 4. Use-case 3

achieve this use-case: (1) using a logical router and attaching
one interface of each virtual network to it; and (2) using
network policies defined in Tungsten Fabric, which is one
of its main networking features. Although figure 4 shows a
logical router interconnecting both L3 networks, the second
alternative has been chosen to implement this use-case.

-170-

IEEE-SCC 2021
December 20 - 22, 2021, Hammamet - Tunisia

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on May 14,2022 at 14:43:27 UTC from IEEE Xplore. Restrictions apply.

As table II shows, correct operation is proved by having
one VM in one virtual network ping another VM on the other
virtual network, as well as performing a file download between
these VMs using wget.

E. ”Stitch” IP networks to existing MPLS L3VPN’s

This use-case is about importing cloud-internal virtual net-
works into existing MPLS L3VPNs which the DC-GW has
knowledge about. Using BGP, the Tungsten Fabric controller
and the DC-GW exchange routes so any VM having a port
on the exported virtual network is accessible from the target
L3VPN. Note that for this use-case, a Juniper vMX router
acting as an extra DC-GW is deployed in the datacenter layout
proposed in figure III. As shown in table II, correct operation

Fig. 5. Use-case 4

is shown by pinging a cloud-internal VM, with private IP
address 10.10.10.100, from the vMX router (DC-GW2), and
establishing an SSH session with it.

F. VM migration across AZ’s

This use-case is about migrating workloads between the
different AZ’s defined: left and right. Two variants are tested:
live migrations, where the migrated VM is to experience zero-
downtime while being migrated, and cold migration, where the
migrated VM will first be shut off, migrated to the other AZ
and booted up to resume operation. Note that in the first case,
the live migration will not have any shared storage, so it will be
a live block migration2. Figure 6 illustrates this use-case. The

Fig. 6. Use-case 5

way of verifying both migration types is the following: one

2According to OpenStack terminology

VM will ping a second VM while the latter is being migrated.
The migrated VM is an Arch Linux cloud image of 1.79GB
of disk size. As mentioned, in the live block migration we
expect no service disruption, but for the cold migration case
we expect an approximate downtime of:

tdowntime = tshutdown+tmigrate+tgrub+tboot+tcontrol (1)

Equation 1 breaks down the total expected downtime.
tshutdown represents the time it takes for the VM to fully
shut down (2s), tmigrate represents the time to copy the disk
contents of the VM, tgrub the default timeout for the GRUB
bootloader (default of 5s), tboot represents the time to boot
the actual VM OS (in technical terms, since it’s a systemd-
controlled Arch distribution, to reach the network target: 6s)
and tcontrol the remaining time for other operations such as
API calls, etc. done by the OpenStack engine (usually around
3-4 seconds).

To estimate tmigrate, the upload bandwidth between the
source and destination compute nodes is needed. This is done
by the iperf3 tool, which prior to the migration, reports a
bandwidth of 2.34 GB/s. Hence, the total disk transfer time
(VM migration) can be estimated by:

tmigrate =
1.79GB

2.34GB/s
= 0.765s (2)

With this in mind, the total expected downtime is
tdowntime = 2 + 0.765 + 5 + 6 + 4 ≈ 18s.

V. RESULTS

Most code listings in this section show a pattern, ’[...]’,
representing truncated output in order to fit a given packet
within a single line.

A. Achieve external connectivity from any VM

Figures 7a and 7b show a VM, with IP address
10.10.10.103, pinging a remote host, ida.liu.se. From both
figures it can be seen that both SNAT (red boxes) and DNAT
(green boxes) are correctly working. In the first NAT stage,
shown in figure 7a, the source IP address is replaced by the
compute node’s fabric underlay IP address, 192.168.100.104.
In the second NAT stage, done at the DC-GW (shown in
figure 7b), this source IP address if further replaced by the DC-
GW’s IP address on the external network, i.e., 150.132.88.189.
The opposite process (DNAT) happens when packets are
destined for the VM with IP address 10.10.01.103.

Figure 7c shows the initial TCP three-way-handshake be-
tween a VM, with IP address 10.10.20.100 and a remote server
(81.228.138.88), to whom it sends a ”Hello world” message
(not shown). As for the previous test, NAT is correctly being
applied at both points. In addition, port translation is also being
performed by the vRouter, i.e., source port 40524 is being
replaced by 51500, which corresponds to the first available
port on the allocated port pool in the vRouter for outgoing L4
connections.

Finally, figure 7d shows a successful file download hosted
on the same remote server, 81.228.138.88, from a VM, with

-171-

IEEE-SCC 2021
December 20 - 22, 2021, Hammamet - Tunisia

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on May 14,2022 at 14:43:27 UTC from IEEE Xplore. Restrictions apply.

IP address 10.10.20.100. The red boxes highlight the HTTP
GET and its response code.

(a) Pinging from a VM to a remote host: ida.liu.se. NAT stage 1, capture at
compute node

(b) Pinging from a VM to a remote host: ida.liu.se. NAT stage 2, capture at
DC-GW

(c) Extract of the TCP initial three-way-handshake with the remote server:
81.228.138.88 . Capture at compute node

(d) File download from a remote server: 81.228.138.88. Capture at compute
node

Fig. 7. Verification of correct operation for use-case 0

B. Create an IP network between VMs in the same AZ

Figure 8a shows the ARP tables from VM1. The
red boxes indicate VM1’s IP (10.10.40.100) and MAC
(02:b3:fd:83:54:28) addresses, while the green box shows
VM2’s IP (10.10.40.101) and MAC (02:40:7f:fc:0e:e0) ad-
dresses. L2 reachability is confirmed by taking a look at
figure 8b where the opposite happens: VM2, with IP address
10.10.40.101 and MAC address 02:40:7f:fc:0e:e0 is able to
”see” VM1 in its ARP tables (shown in the red box). This
proves that both VMs belong to the same broadcast domain.
Interestingly, the vRouter acts as an ARP proxy in order not
to overload the underlay topology with ARP flood requests.

Figure 8c show a ping trace from VM1 to VM2. As
opposed to the first use-case, no NAT is done this time, since
traffic remains inside of the datacenter. Hence, this use-case
is concluded.

C. Create an IP network between VMs in different AZ’s

The results obtained through the execution of connectivity
tests for this use case have no practical differences with respect
to the previous use-case, where, as can be seen from figures 9a
and 9b, both VMs belong to the same L2 domain and are able
to ping each other.

(a) Checking VM1’s ARP tables

(b) Checking VM2’s ARP tables

(c) Pinging VM2 from VM1, capture from compute node hosting VM1

Fig. 8. Verification of correct operation for use-case 1

(a) Checking VM1’s ARP tables

(b) Checking VM2’s ARP tables

(c) Pinging VM2 from VM1, capture from compute node hosting VM1

Fig. 9. Verification of correct operation for use-case 2

D. Create a routed L3 connection between two IP networks

Figure 10a shows a packet capture of VM1, with IP address
and subnet 10.10.10.100/24, while it pings VM2, with IP
address and subnet 10.10.20.101/24. Even if both VMs belong
to two different IP networks, both belong to the same AZ.
On the other hand, figure 10b shows the same connectivity
test between VM1 (10.10.10.100/24) and another VM (named
VM3, with IP address 10.10.20.100/24), hosted on a different
AZ. ICMP requests get their corresponding response, meaning
that traffic between both virtual networks is enabled thanks to
the network policy defined in Tungsten Fabric.

Figure 10c shows a file download originated from VM1. The

-172-

IEEE-SCC 2021
December 20 - 22, 2021, Hammamet - Tunisia

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on May 14,2022 at 14:43:27 UTC from IEEE Xplore. Restrictions apply.

file is hosted on VM3. The red boxes highlight the HTTP GET
request and its corresponding response message. This proves
L7 connectivity across initially isolated virtual networks.

(a) Pinging VM2 from VM1, capture from compute node hosting VM1

(b) Pinging VM3 from VM1, capture from compute node hosting VM1

(c) Downloading a text file hosted on VM3 from VM1

Fig. 10. Verification of correct operation for use-case 3

E. ”Stitch” IP networks to existing MPLS L3VPN’s

Figure 11a shows the routing information to reach the VM
(10.10.10.100). From the blue box one can see that this route is
learned from the Tungsten Fabric controller at 192.168.100.50,
and the green box indicates what the controller tells the DC-
GW about this route: it is reachable via the compute node at
192.168.100.103. Finally, figures 11b and 11c show that the
ping and the SSH connection are functional when using the
specific vMX VRF of the MPLS L3VPN, named TF-VPN,
thus concluding this use-case.

F. VM migration across AZ’s

1) Block live migration: Figure 12 shows the ping Round-
Time Trip (RTT) measured from a VM which pings another
VM while being live migrated. The ping interval is set to
100ms instead of the default 1s. Recall that the live migration
has no shared storage, thus called block live migration. As seen
in figure 12, the ICMP pings are uninterrupted throughout the
whole migration process, but a significant peak can be noticed.
In the live migration process, the step usually referred to as
stop and copy ”suspends” the VM and copies the remaining
memory pages from the source to the destination compute
node. Since the migrated VM is an Arch Linux image with
44 MB of active RAM usage at the time of the migration
(checked with the UNIX free command), having a measured
upload bandwidth of 2.05GB/s (using iperf3), this step took at
most 44MB

2.05GB/s = 26ms. Thus, the observed peak is observed
due to the fact that the last memory pages are being copied
and control is being transferred to the new compute node, thus
resulting in a slower ICMP reply reception.

2) Cold migration: Figure 13 shows the obtained ping RTT
times when a VM pings another VM while being ”coldly”
migrated. As expected, the pings get interrupted while the VM

(a) Route information about the cloud-internal VM

(b) Pinging the cloud-internal VM from the new DC-GW

(c) Establishing an SSH connection to the cloud-internal VM

Fig. 11. Verification of correct operation for use-case 3

Fig. 12. Ping RTT obtained when VM1 pings VM2 while being migrated
(block live)

is being migrated. In particular, from figure 13, a downtime of
approximately 17 seconds can be observed, which corresponds
to the expected downtime calculation according to equation 1.
Observe that in both cases, the measured bandwidths are
highly elevated, thus achieving small migration times. This is
due to the fact that the deployment made in this PoC is purely
virtual, as explained in section III, so all running instances are
hosted within the same physical server. Hence, DC-internal
traffic never leaves the physical server.

-173-

IEEE-SCC 2021
December 20 - 22, 2021, Hammamet - Tunisia

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on May 14,2022 at 14:43:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 13. Ping RTT obtained when VM1 pings VM2 during migration (cold)

VI. CONCLUSION & FUTURE WORK

In this paper, a fully-featured open-source SDN system,
Tungsten Fabric, along with a production OpenStack platform,
was deployed on a virtualized datacenter hosted within a
bare-metal server. The approach for testing the efficacy of
Tungsten Fabric was to examine a set of use-cases that had also
been carried out in parallel with a proprietary SDN solution,
Contrail Cloud, developed and maintained by Juniper.

The obtained results show that Tungsten Fabric can deliver
the exact use-cases that Contrail Cloud has to offer, but with
the attractive advantage of being open-source. Deploying such
a solution has potential to replace the expensive propriety
solutions. This eases research and promotes innovation, which
is a core ideology of SDN. The main limitation that this
study had purely virtual nature. In real-life deployments, VM
migration times (possibly even across datacenters on different
continents) are likely to be longer.

REFERENCES

[1] Feamster, N., Rexford, J., & Zegura, E. (2014). The road to SDN:
an intellectual history of programmable networks. ACM SIGCOMM
Computer Communication Review, 44(2), 87-98.

[2] Benson, T., Akella, A., & Maltz, D. A. (2009, April). Unraveling the
complexity of network management. In NSDI (pp. 335-348).

[3] Son, J., & Buyya, R. (2018). A taxonomy of software-defined network-
ing (sdn)-enabled cloud computing. ACM Computing Surveys (CSUR),
51(3), 59.

[4] Kreutz, D., Ramos, F. M., Verissimo, P., Rothenberg, C. E., Azodol-
molky, S., & Uhlig, S. (2015). Software-defined networking: A compre-
hensive survey. Proceedings of the IEEE, 103(1), 14-76.

[5] Harrabi, M. A., Jeridi, M., Amri, N., Jerbi, M. R., Jhine, A., & Khamassi,
H. (2015, June). Implementing NFV routers and SDN controllers in
MPLS architecture. In 2015 World Congress on Information Technology
and Computer Applications (WCITCA) (pp. 1-6). IEEE.

[6] Yu, Y., Lin, Y., Zhang, J., Zhao, Y., Han, J., Zheng, H., ... & Yang,
H. (2013, November). First field demonstration of network function
virtualization via dynamic optical networks with OpenContrail and
enhanced NOX orchestration. In Asia Communications and Photonics
Conference (pp. AF2C-4). Optical Society of America.

[7] Guerzoni, R., Trivisonno, R., & Soldani, D. (2014, November). SDN-
based architecture and procedures for 5G networks. In 1st International
Conference on 5G for Ubiquitous Connectivity (pp. 209-214). IEEE.

[8] Sun, S., Gong, L., Rong, B., & Lu, K. (2015). An intelligent SDN
framework for 5G heterogeneous networks. IEEE Communications
Magazine, 53(11), 142-147.

[9] Cho, H. H., Lai, C. F., Shih, T. K., & Chao, H. C. (2014). Integration
of SDR and SDN for 5G. IEEE Access, 2, 1196-1204.

[10] Piedrahita, A. F. M., Gaur, V., Giraldo, J., Cardenas, A. A., & Rueda, S.
J. (2018). Leveraging software-defined networking for incident response
in industrial control systems. IEEE Software, 35(1), 44-50.

[11] Kalkan, K., & Zeadally, S. (2017). Securing internet of things (IoT) with
software defined networking (SDN). IEEE Communications Magazine,
(99), 1-7.

[12] Azizian, M., Cherkaoui, S., & Hafid, A. S. (2017). Vehicle software
updates distribution with SDN and cloud computing. IEEE Communi-
cations Magazine, 55(8), 74-79.

[13] Cziva, R., Jouët, S., Stapleton, D., Tso, F. P., & Pezaros, D. P. (2016).
SDN-based virtual machine management for cloud data centers. IEEE
Transactions on Network and Service Management, 13(2), 212-225.

[14] Martini, B., Adami, D., Sgambelluri, A., Gharbaoui, M., Donatini, L.,
Giordano, S., & Castoldi, P. (2014, June). An SDN orchestrator for
resources chaining in cloud data centers. In 2014 European Conference
on Networks and Communications (EuCNC) (pp. 1-5). IEEE.

[15] Muñoz, R., Vilalta, R., Casellas, R., Martinez, R., Szyrkowiec, T.,
Autenrieth, A., ... & López, D. (2015). Integrated SDN/NFV manage-
ment and orchestration architecture for dynamic deployment of virtual
SDN control instances for virtual tenant networks. Journal of Optical
Communications and Networking, 7(11), B62-B70.

[16] Mayoral, A., Vilalta, R., Muñoz, R., Casellas, R., & Martinez, R.
(2015, March). Experimental seamless virtual machine migration using
an integrated SDN IT and network orchestrator. In 2015 Optical Fiber
Communications Conference and Exhibition (OFC) (pp. 1-3). IEEE.

[17] Liu, J., Li, Y., & Jin, D. (2014, August). SDN-based live VM migration
across datacenters. In ACM SIGCOMM Computer Communication
Review (Vol. 44, No. 4, pp. 583-584). ACM.

[18] Liyanage, M., Ylianttila, M., & Gurtov, A. (2016, January). Improving
the tunnel management performance of secure VPLS architectures
with SDN. In 2016 13th IEEE Annual Consumer Communications
Networking Conference (CCNC) (pp. 530-536). IEEE.

[19] Garrich, M and Hernández-Bastida, M and San-Nicolás-Martı́nez, C and
Moreno-Muro, FJ and Pavon-Marino, P (2019, March). The Net2Plan-
OpenStack Project: IT Resource Manager for Metropolitan SDN/NFV
Ecosystems. In Optical Fiber Communications Conference and Exhibi-
tion (OFC). IEEE.

[20] He, TianZhang and Toosi, Adel Nadjaran and Buyya, Rajkumar (2019).
Performance evaluation of live virtual machine migration in SDN-
enabled cloud data centers. IJournal of Parallel and Distributed Com-
puting (pp. 55-68). Elsevier.

[21] Toosi, Adel Nadjaran and Son, Jungmin and Buyya, Rajkumar (2018,
April). Clouds-PI: a low-cost Raspberry-PI based testbed for software-
defined-networking in cloud data centers. In ACM SIGCOMM Comput
Commun Rev 7 (pp. 1-11). ACM.

[22] Garrich, Miquel and Moreno-Muro, Francisco-Javier and Delgado,
Marı́a-Victoria Bueno and Mariño, Pablo Pavón (2019, January). Open-
source network optimization software in the open SDN/NFV transport
ecosystem. In 2019 Journal of Lightwave Technology, Vol. 37, No. 1,
(pp. 75-88). IEEE.

[23] Q. Schueller and K. Basu and M. Younas and M. Patel and F. Ball
(2018, November). A Hierarchical Intrusion Detection System using
Support Vector Machine for SDN Network in Cloud Data Center. In
2018 28th International Telecommunication Networks and Applications
Conference (ITNAC) (pp. 1-6). IEEE.

-174-

IEEE-SCC 2021
December 20 - 22, 2021, Hammamet - Tunisia

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on May 14,2022 at 14:43:27 UTC from IEEE Xplore. Restrictions apply.

